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ABSTRACT 

Let L be a finite Galois ex tens ion  of a global field F .  It is shown tha t  if 

t he  Galois group G = Gal(L/F) satisfies a cer ta in  condit ion,  t hen  L is a 

max ima l  commut a t i ve  subfield of some F-div is ion  a lgebra  if and  only if 

the  in te rmedia te  field corresponding to the  Frat t in i  subgroup  of G is also 

a max ima l  c o m m u t a t i v e  subfield of some F-divis ion algebra.  In par t icular  

this  condi t ion holds if G is a supersolvable group.  

* T h e  t h i r d  a u t h o r  was  s u p p o r t e d  in p a r t  by  t h e  N S F  u n d e r  G r a n t  D M S  97-01253.  
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1. Introduction 

This paper is concerned with the following question: If F is a field and L a finite 

extension of F,  does there exist an F-central division algebra D containing L 

as a maximal commutative subfield? If there exists such a D, L is said to be 

F-adequate; otherwise L is F-deficient. This question was first explored in depth 

in [S]. 

In this paper we consider a certain group-theoretic condition and show that 

if a finite Galois extension L of a global field F has a Galois group G satisfying 

this condition, then the F-adequacy of L is determined by the F-adequacy of 

the subfield fixed by the Frattini subgroup of G. We show in Section 3 that a 

class of groups that includes finite supersolvable groups satisfies this condition. 

In Section 4 we exhibit some groups that do not satisfiy this condition. For 

basic group-theoretic results and facts about Frattini subgroups in particular, 

the reader is referred to [D] and [H]. 

We fix L to be a finite Galois extension of a global field F with G = Gal (L/F) .  

We write (I)(G) for the Frattini subgroup of G, and let K be the subfield of L 

that is fixed by (I)(G). Since (I)(G) is normal in G, it follows that K / F  is a Galois 

extension. 

A result of Schacher ([S; Corollary 2.3]) implies that if L is F-adequate, then 

K is also F-adequate. We show in Theorem 2.2 that if G satisfies the group- 

theoretic condition mentioned above, then the converse of this statement holds. 

Combining Propositions 2.1, 2.5 and 2.6 of [S], we have the following charac- 

terization of F-adequate Galois extensions. This characterization will allow us 

to connect the F-adequacy of L to the F-adequacy of K.  

THEOREM 1,1: [S] Let L / F  be a Galois extension of global fields with 
[ L : F ] = p ~ ' . . .  er " " ,  Pr , where Pl, Pr are distinct prime numbers. The following 

are equivalent. 

(1) L is F-adequate. 

(2) For each i, 1 < i < r, there exist two distinct prime spots q,q' of F 

(depending on i) such that pe, I [Lq : Fq] and pe, [ [Lq, : Fq,]. 

2. A group-theoretic condition for adequacy 

Definition 2.1: Let p be a prime number. We say a finite group G is p-Frattini 
closed  if for every subgroup H of G, i f p l  [G : H], then p ] [G : q)(G)H]. We say 

G is F r a t t i n i  c losed if G is p-Frattini closed for all primes p. 
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We remark that  it is always true that  if [G : HI > 1, then [G : O(G)H] > 1. 

For if [G : HI > 1, then H is contained in a maximal subgroup M of G. Then 

O(C) <_ M and so O(G)H < M < C. 

THEOREM 2.2: Let L be a lqnite Galois extension o f a  globaI gem F with G = 

Gal(L/F) .  Let O(G) be the Frnttini subgroup of G, and let K be the subfield of 

L that is fixed by ~2(G). I l K  is F-adequate and G is Frattini dosed, then L is 
F-adequate. 

Proof: Let [L : F] = P l  " . p e r  and [K : F] = p { ' . . . p [ r  where f~ < ei, 

1 < i < r. Fix Pi. Since K is F-adequate,  there exist distinct prime spots q, q' 

of F such that  p[' } [Kq : Fq] and p[~ ] [Kq, : Fq,]. Let H = Gal(L/(Fq n L)). 

Since Lq = FqL, Kq -= Fqg,  and both L/F,  K / F  are Galois extensions, we have 

Cal(Lq/Fq) ~ Gal(L/(Fq n L)) and Gal(Kq/Fq) ~ Cal(K/(Fq N K)) .  Since 

q~(G) corresponds to K and H corresponds to Fq N L, it follows that  the group 

q)(G)H corresponds to K A (Fq N L) = Fq A K.  We have p{' I [Kq : Fq] = 

[K : Fq n K] = [O(G)H : q)(G)], and [G : ~(G)] = [K : F] = pl/1-..pIT. 
e l  . , ,  e r  

Therefore p, ~ [c:e(a)] = [ a :  ~5(G)H]. Thus p~ { [ a :  HI = ~ since G [6,(G)HicI,(G)] IH I , 
is Frattini closed. Therefore p~ I IHI = [L : Fq A L] = [Lq: Fq]. Since a similar 

calculation holds for qq it follows from Theorem 1.1 that  L is F-adequate.  | 

The usefulness of this proposition depends on how Gal (K /F)  = a/e(a) com- 

pares to G. For example, if O(G) = 1, then G is trivially Frattini closed and 

K = L ,  so Theorem 2.2 provides no new information. This holds, for example, if 

G is simple, or G = S~, n > 2, or G = A4. On the other hand, if O(G) is large, 

then Theorem 2.2 reduces the question of F-adequacy of L to that  of a much 

smaller field K.  The next result shows that  p-groups and nilpotent groups are 

always Frattini closed. 

PROPOSITION 2.3: Let G be a finite group. Then G is Frattini closed if either 

G is a p-group or G is a nilpotent group. 

Proof: Assume first that  G is a p-group, and suppose p [ [G : HI. Then 

[G: HI > 1, and so [G: O(G)H] > 1 by our earlier remark. Then p I [G: (I)(G)H] 

since G is a p-group. 

Now assume G is nilpotent. Then G - P1 x - . .  x P,. where P 1 , . . . ,  Pr are the 

Sylow subgroups of G. Since the Sylow subgroups have pairwise relatively prime 

orders, it follows that  for ally subgroup H of G, H ~ H1 x . . .  x f ir,  Hi <_ P~. 
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Also (I)(G) = ~(Px) x . . .  • (I)(Pr). Then [G: (I)(G)H] = 1-I,r__l[Pi : (I)(Pi)H,] and 

[G : HI = l ' -I i=l[r  ~ :  H,]. The result then follows from the result for p-groups. 
| 

Recall that if G is a p-group, then G/~(G) is an elementary abelian p-group 

of rank equal to the order of a minimal set of generators for G, and if G is a 

nilpotent group, then G/q~(G) is a direct product of elementary abelian p-groups 

for various primes p. The results above show that questions of adequacy for 

Galois p-extensions of global fields reduce to questions of adequacy for elementary 

abelian p-extensions. In fact, the following two results show that  this is true for 

Galois extensions having nilpotent Galois groups. 

PROPOSITION 2.4: Let E1/F and E2/F be Galois extensions of a global field F 

with [El : F] and [E2 : F] relatively prime. Then the compositum E = EIE2 is 

F-adequate if and only if E1 and E2 are both F-adequate. 

Proo~ First observe that by IS; Corollary 2.3], if E is F-adequate, then E1 and 

E2 are both F-adequate. Conversely, suppose E1 and E2 are both F-adequate. 

Let p be a rational prime. Suppose p'~ ] [E : F] and pn+l { [E : F]. Then 

P'* I[E, : /7] for i = 1 or i = 2. The F-adequacy of E~ implies the existence of 

two primes q, q' of F such that p" I [(E,)q : Fq] and pn I [(E,)q, : Fq,], and hence 

P'* I [Ea: Fq] and pn] [Eq,: Fq,]. Thus E is F-adequate by Theorem 1.1. | 

COROLLARY 2.5: Let L be a finite Galois extension of a global field F with 
nilpotent Galois group G. Then L is F-adequate if and only if E is F-adequate 

for every maximal elementary abelian p-extension E of F inside L. 

Proof'. Since G is Frattini closed by Proposition 2.3, it follows from Theorem 2.2 

that L is F-adequate if and only if K is F-adequate, where Gal (K/F)  = G/O(G). 

Since G/cb(G) is a direct product of the maximal elementary p-abelian quotients 

of G, we see that K is the compositum of the maximal elementary abelian p- 

extensions of F inside L. Then by Proposition 2.4, it follows that K is F-  

adequate if and only if each of these maximal elementary abelian p-extensions is 

F-adequate. | 

For a p-group (or nilpotent group) with a small number of generators relative 

to its order, Theorem 2.2 gives a significant reduction. This becomes particularly 

useful when combined with the following results of Schacher. 
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PROPOSITION 2.6: 

(1) ([S; Theorem 10.1]) Let [k: Q] = n and let G be a finite p-group. If there 

exists a k-adequate Galois extension of k with Galois group G, then the 

number of generators of G is at most (n/2) + 2. 

(2) (IS; Theorem 10.2]) Let k be an algebraic number field in which p has a 

unique extension, and let G be a finite group. If there exists a k-adequate 

Galois extension of k with Galois group G, then any p-Sylow subgroup of 

G is metacyclie. 

(3) (IS; Theorem 10.3]) Let k be a global field of characteristic p r 0 and let 

G be a finite group. If there exists a k-adequate Galois extension ofk with 

Galois group G, then every q-Sylow subgroup is metacyelie, for q ~ p. 

Statement (1) of Proposition 2.6 shows that if L is a Q-adequate Galois p- 

extension of Q, then G/~b(G) TM Z/pZ or Z/pZ x Z/pZ. Thus by Theorem 2.2 

and Proposition 2.3, a Galois p-extension L is Q-adequate if and only if the 

maximal elementary abelian p-extension of Q inside L has degree at most p2, 

and that extension is Q-adequate. This result is used in [GLS] to give an explicit 

means for determining Q-adequacy of all Galois 2-extensions of Q. 

3. Fra t t in i -c losed  groups  

This section considers which finite groups are Frattini closed. For example, we 

show in Corollary 3.8 that  finite supersolvable groups are always Frattini closed. 

PROPOSITION 3.1: Let P be a Sylow p-subgroup of a finite group G. If G is 

p-Frattini closed, then ~b(G) n P ~_ ~b(P). 

Proof." Let i be a maximal subgroup of P. Then [P:  M] -- p, so p I [G: i ] .  

Since G is p-Frattini closed, it follows that p [ [G : (I)(G)M], and hence P 

~)(G)M. This implies ((I)(G) n P)M ~ P. Therefore (I)(G) n P < M, since M is 

a maximal subgroup of P. This holds for all such M, and so (I)(G) n P ~ (I)(P). 

I 

The following lemma is proved in [I; Lemma 8.22], pp. 108-109. 

LEMMA 3.2: Let N be a normal subgroup of a finite group G, H any subgroup 

of G, and p a prime number. Suppose that P is a Sylow p-subgroup of G such 

that P n H is a Sylow p-subgroup of H. Then P n N H  = (P N N) (P  G H) is a 

Sylow p-subgroup of NH.  

We observe that  if (I)(G) N P _< (I)(P) for some Sylow p-subgroup P of G, then 

this condition holds for every Sylow p-subgroup of G, since (I)(G) is normal in G. 
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PROPOSITION 3.3: Let G be a finite group. I f~(G) fl P <_ ~(P) for some (and 
hence every) Sylow p-subgroup P of G, then G is p-Frattini dosed. 

Proof: Let H be a subgroup of G, and suppose p I [G : H]. Let J be a Sylow 

p-subgroup of H and let P be a Sylow p-subgroup of G that contains J. Then 

P N H - -  J. Let K - -  O(G) N P  _< ~(P) .  Then K is a Sylowp-subgroup of 

O(G) since O(G) is normal in G. We know p [ I F :  J], since p J IG:  H] implies 

P I [G:  g] = [G : P ] [ P :  J ] , b u t p ~ [ G :  P]. T h e n p  I [ P :  ~(P)J]  since P i s  

p-Prattini closed by Proposition 2.3. Therefore p I [P : KJ], since K <__ O(P), 

and hence p I [G: gd]. Lemma 3.2 then implies p t [G: ~(G)H] since K J  is a 
Sylow p-subgroup of ~(G)H. Thus G is p-Frattini closed. II 

COROLLARY 3.4: Let G be a finite group, and let P be a Sylow p-subgroup of 
G. Then G is p-Frattini dosed if and only if O(G) N P < ~(P). 

Proof: This follows immediately from Propositions 3.1 and 3.3. II 

LEMMA 3.5: Let G be a finite group and let P be a Sylow p-subgroup of G. Let 
N be a normal subgroup of G, and assume that either p does not divide IN[ or 
N <_ ~(P).  I f G / N  is p-Frattini closed, then G is p-Frattini closed. 

Proof." First suppose p does not divide INI. Let H be a subgroup of G with 

p I [G : H]. Then p [ [G : NH], since [G : H] = [G : NH][NH : H] = 
[G: NH][N: N N  H] and p{ [N:  N NH]. Since p I [G: NH] = [G/N: NH/N] 
and G/N is p-Frattini closed, it follows that p I [G/N: O(G/N)NH/N]. Since 

a2(G/N) >_ O(G)N/N, it follows that 

p l [ G / g :  (r = [G/N: ~(G)HN/N] = [G: r 

Therefore p [ [G : ~(G)H], and G is p-Frattini closed. 

Now suppose N <_ ~(P)  _< P. We know P / N  is a Sylow p-subgroup of G/N 
since [G/N : P/N] = [G : P]. Since G/N is p-Frattini closed, we have, by 

Proposition 3.1, 

(~(G)N/N) N (PIN) <_ (P(G/N) N PIN  <_ 02(P/N) = ~(P)/N.  

Thus ~(G)N N P < ~(P). Therefore r N P _< ~(P),  and G is p-Frattini 

closed by Proposition 3.3. | 

If G is a finite group and p a prime number, let Op, (G) denote the largest 

normal subgroup of G whose order is prime to p. 
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Detinition 3.6: Let G be a finite group and p a prime number. We say that  G 

has p - l e n g t h  1 if G/Op, (G) has a normal Sylow p-subgroup. 

We note that  if G has p-length 1 and N is a normal subgroup of G, then G/N 
also has p-length 1. 

THEOREM 3.7: Let G be a finite group of p-length 1. Then G is p-Frattini closed. 

Proof: The proof is by induction on IGI. Let P be a Sylow p-subgroup of G. 

If lOp, (G)[ > 1, then G/Op, (G) has p-length 1 and by induction it follows that  

G/Op, (G) is p-Prattini closed. Then Lemma 3.5 implies that  G is p-Frattini 

closed. We may now assume that  lOp, (G)I = 1. Then P is a normal subgroup of 

G and it follows that  qh(p) is also a normal subgroup of G. If [(I)(P)I > 1, then 

G/ae(P) has p-length 1 and by induction G/~(P) is p-Frattini closed. Lemma 3.5 

again implies that  G is p-Frattini closed. We *nay now assume that  I(I)(P)I = 1 

so that  P is a normal elementary abelian Sylow p-subgroup of G. By the Schur- 

Zassenhaus Theorem, there exists a p-complement K to P in G. We may regard 

P as an Fp[K]-module. By Maschke's Theorem, P = P1 @ "'" �9 Pr with each 

P, an irreducible Fp[g]-module. Let P~ = ~jr Then P'K is a maximal 

subgroup of G and so (I)(G) < ~ ,  PiK = K. Hence (I)(G) V/P = 1, as desired. 
| 

COROLLARY 3.8: Let G be a finite supersolvable group. Then G has p-length 1 

for every prime p and hence G is Frattini closed. 

Proof." Let p be a prime divisor of IGI and let P be a Sylow p-subgroup of G. By 

[H; 10.5.4], [G,G] is nilpotent. So [G,G] = (Pn[G,G]) x R, where R is a normal 

subgroup of G of order prime to p. Hence R <_ Op, (G) and so, [G, G] _< Op, (G)P. 
Thus Op,(G)P is a normal subgroup of G. Therefore G has p-length 1 and so, 

by Theorem 3.7, G is p-Frattini closed. | 

4. S o m e  c o u n t e r e x a m p l e s  

In this section we describe a few examples of finite groups which are not Frat- 

tini closed. By Frattini 's  argument ([H; 10.4.2]), (I)(G) is a normal, nilpotent 

subgroup of the finite group G, hence contained in the Fitting subgroup F(G), 
the maximal normal nilpotent subgroup of G. In all of our examples, F(G) will 

be an elementary abelian normal p-subgroup of G for some prime p and we will 

have CG(F(G)) = F(G). Hence we may regard F(G) -- V as a g[H]-module ,  
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where K = Z/pZ and H = G/F(G).  We denote by J(V)  the intersection of all 

maximal K[H]-submodules of V. 

LEMMA 4.1: For G and V as above, J(V)  <_ O(G) <_ V. 

Proo~ As noted above, O(G) < V. Let M be a maximal subgroup of G. If  

G ~ VM,  then V _< M. On the other hand, if G = VM,  then V V1M < V and 

so V A M  is contained in a maximal K[H]-submodule W of V, whence W M  < G 

and so W = V n M. Thus either ~(G)  = V or O(G) is the intersection of certain 

maximal  K[H]-submodules of V. In particular J(V)  <_ 4~(G), as claimed. | 

In most of our examples, G = V >~ H for H a subgroup of G having a Sylow 

p-subgroup of order p. 

LEMMA 4.2: Suppose that G = V >~ H where H is a subgroup of G having a 

Sylow p-subgroup A of order p. Let P = VA. Then O(P) = [V, A] = [P, P]. 

Proo~ Since V is an elementary abel |an p-subgroup of G and IV, A],~VA = P, it 

follows that  P/[V, A] is an abel |an group generated by elements of order p, hence 

is elementary abel|an. Thus O(P) < [V, A] _< [P, P], whence equality holds. 
| 

Since our goal is to exhibit examples with ,I,(G) n P ~ O(P) for P a Sylow 

p-subgroup of G, it will suffice to exhibit groups G = V x H having a Sylow 

p-subgroup P = V >~ A with IAJ = p such that  J(V)  ~ [V, A]. If V is completely 

reducible, then J(Y)  = 0 and so J(V)  < [V, A]. Hence we will look at the 

opposite extreme - -  indecomposable K[G]-modules which are not irreducible. 

We shall look at projective indecomposable modules for groups H with H = LA 

where A is a Sylow p-subgroup of H of order p and L is a Hall i f-subgroup of H,  

i.e., A n L = 1. Such Hall subgroups always exist in solvable groups by a theorem 

of Philip Hall. The following observation was called to our attention by Walter 

Feit. 

LEMMA 4.3: Let H be a finite group, p a prime and K a field of characteristic p. 

Suppose that H has a Hall p~-subgroup L. Then every projective indecomposable 

K[H]-module is a direct summand ofIndL H (W) for some irreducible K[L]-module. 

Proo~ Projective indecomposables are direct summands of the group algebra 

K[H]. Now K[H] = I n d H ( g )  where 1 denotes the trivial subgroup of H.  Then 

by transitivity of induction 

K[H] = IndLH(IndL(K)) = IndLH(K[L]). 
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As L is a pl-group, K[L] is completely reducible by Maschke's Theorem. Hence 

IndH(g[L])  is a sum (with multiplicities) of IndH(W) as W ranges over the 

irreducible K[L]-modules. Now we are done by the Krull-Schmidt Theorem. 
| 

In our first example, p = 3, K = Z/3Z and H = SL(2, 3) = Q >~ A, where Q is a 

normal quaternion subgroup of order 8 and A is a cyclic group of order 3. Let W 

be the absolutely irreducible 2-dimensional K[Q]-module obtained by regarding 

Q as a subgroup of GL(2, 3). By Green's Indecomposability Theorem [CR; 19.22], 

V = Ind~ (W) is a projective indecomposable K[H]-module of dimension 6. Such 

projective indecomposable modules always have a unique irreducible quotient. 

As W is the restriction to Q of an irreducible 2-dimensional K[H]-module V0, it 

follows by Frobenius Nakayama Reciprocity [A; III.6] that J(V) is 4-dimensional 

with V/J(V) TM Vo. On the other hand, as a K[A]-module, V is projective, hence 

free. So VA is the direct sum of two copies of K[A], whence [V, A] is also 4- 

dimensional. 

LEMMA 4.4: Let H = SL(2,3), K = Z/3Z and let V be the 6-dimensional 
indecomposable K[H]-module described above. Let A be a Sylow 3-subgroup of 
g .  Then J(V) ~ IV, A]. Hence ifG = Y >~ H, then ~5(G) A P  ;~ ~5(p). 

Proof: Suppose on the contrary that J(V) <_ IV, A]. Then as both spaces are 

4-dimensional, J(V) = [V, A] and so A is in the kernel of the action of H on 

V/J(V). However V/J(V) = Vo, a faithful K[H]-module. This contradiction 

proves that J(V) ~ IV, A] and the final statement follows by previous remarks. 
| 

Remark: With H and V as above, V has a unique minimal K[H]-submodule 

V0 of dimension 2. If we set V1 = V/Vo, then H and V1 afford an even smaller 

counterexample. 

We shall only remark briefly on other similar examples. First of all, we may 

mimic the above example by replacing SL(2, 3) by H = Q >~ A, where Q is 

a non-abelian q-group for some prime q ~ p and A is a cyclic group of order 

p, where p divides q2 _ 1 and CH(Q) = Z(Q). We let g be a finite field of 

characteristic p containing primitive qth roots of 1. Then there is an absolutely 

irreducible K[Q]-module W of dimension q and again V = I n d , ( W )  is an inde- 

composable K[H]-module with V/J(V) ~- Wo, where W0 is an irreducible lift of 

W to a q-dimensional K[H]-module. Again VA is a free K[A]-module, whence 
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dimK([V, A]) : d imK(g(Y)) .  Thus the hypothesis that  J(V)  < [V, A] leads to 

the same contradiction as before. 

Finally we mention two non-solvable counterexamples. First, taking p : 5 and 

H : Ah, the alternating group of degree 5, we see that  H has a Hall 5'-subgroup J 

isomorphic to A4. Taking K : Z /hZ,  we may take an irreducible K[J]-module  W 

of dimension 3 and then take V : Ind H (W). Although Green's Theorem does not 

apply, an easy inspection of K[H] confirms that  V is a projective indecomposable 

module for H,  after which the same argument as before shows that  J(V)  ~ [V, A] 

for A a Sylow 5-subgroup of H.  

Lastly, a rather different type of counterexample is afforded by a group G with 

F (G)  : V elementary abelian of order 8 and with G / V  ~- GL(3,2) but with 

no subgroup of G isomorphic to GL(3, 2). Such a group may be exhibited as a 

subgroup of the Chevalley group G2(5), for example. Since there is no partial 

complement to V in G, it follows easily that  &(G) : V. On the other hand, G 

contains the normalizer of a Car tan subgroup T of G2(5) with 

T : ~ Z / 4 Z  x Z /4Z  

and with Na2(5)(T)/T ~- W(G2) --- D6, where D6 is the dihedral group of all 
symmetries of the regular hexagon. A Sylow 2-subgroup P of G is contained in 
Nc2(5)(T), whence by inspection, ~ ( P )  is contained in T. Hence ~P(G) N P = 
r  = v ~ r  in this case as well. 
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