

FRATTINI CLOSED GROUPS AND ADEQUATE EXTENSIONS OF GLOBAL FIELDS

BY

DAVID B. LEEP

*Department of Mathematics, University of Kentucky
Lexington, KY 40506-0027, USA
e-mail: leep@ms.uky.edu*

AND

TARA L. SMITH

*Department of Mathematical Sciences, University of Cincinnati
Cincinnati, OH 45221-0025, USA
e-mail: tsmith@math.uc.edu*

AND

RONALD SOLOMON*

*Department of Mathematics, Ohio State University
Columbus, OH 43210, USA
e-mail: solomon@math.ohio-state.edu*

ABSTRACT

Let L be a finite Galois extension of a global field F . It is shown that if the Galois group $G = \text{Gal}(L/F)$ satisfies a certain condition, then L is a maximal commutative subfield of some F -division algebra if and only if the intermediate field corresponding to the Frattini subgroup of G is also a maximal commutative subfield of some F -division algebra. In particular this condition holds if G is a supersolvable group.

* The third author was supported in part by the NSF under Grant DMS 97-01253.

Received May 25, 2000

1. Introduction

This paper is concerned with the following question: If F is a field and L a finite extension of F , does there exist an F -central division algebra D containing L as a maximal commutative subfield? If there exists such a D , L is said to be F -adequate; otherwise L is F -deficient. This question was first explored in depth in [S].

In this paper we consider a certain group-theoretic condition and show that if a finite Galois extension L of a global field F has a Galois group G satisfying this condition, then the F -adequacy of L is determined by the F -adequacy of the subfield fixed by the Frattini subgroup of G . We show in Section 3 that a class of groups that includes finite supersolvable groups satisfies this condition. In Section 4 we exhibit some groups that do not satisfy this condition. For basic group-theoretic results and facts about Frattini subgroups in particular, the reader is referred to [D] and [H].

We fix L to be a finite Galois extension of a global field F with $G = \text{Gal}(L/F)$. We write $\Phi(G)$ for the Frattini subgroup of G , and let K be the subfield of L that is fixed by $\Phi(G)$. Since $\Phi(G)$ is normal in G , it follows that K/F is a Galois extension.

A result of Schacher ([S; Corollary 2.3]) implies that if L is F -adequate, then K is also F -adequate. We show in Theorem 2.2 that if G satisfies the group-theoretic condition mentioned above, then the converse of this statement holds.

Combining Propositions 2.1, 2.5 and 2.6 of [S], we have the following characterization of F -adequate Galois extensions. This characterization will allow us to connect the F -adequacy of L to the F -adequacy of K .

THEOREM 1.1: [S] *Let L/F be a Galois extension of global fields with $[L : F] = p_1^{e_1} \cdots p_r^{e_r}$, where p_1, \dots, p_r are distinct prime numbers. The following are equivalent.*

- (1) *L is F -adequate.*
- (2) *For each i , $1 \leq i \leq r$, there exist two distinct prime spots q, q' of F (depending on i) such that $p_i^{e_i} \mid [L_q : F_q]$ and $p_i^{e_i} \mid [L_{q'} : F_{q'}]$.*

2. A group-theoretic condition for adequacy

Definition 2.1: Let p be a prime number. We say a finite group G is **p -Frattini closed** if for every subgroup H of G , if $p \mid [G : H]$, then $p \mid [G : \Phi(G)H]$. We say G is **Frattini closed** if G is p -Frattini closed for all primes p .

We remark that it is always true that if $[G : H] > 1$, then $[G : \Phi(G)H] > 1$. For if $[G : H] > 1$, then H is contained in a maximal subgroup M of G . Then $\Phi(G) \leq M$ and so $\Phi(G)H \leq M \subsetneq G$.

THEOREM 2.2: *Let L be a finite Galois extension of a global field F with $G = \text{Gal}(L/F)$. Let $\Phi(G)$ be the Frattini subgroup of G , and let K be the subfield of L that is fixed by $\Phi(G)$. If K is F -adequate and G is Frattini closed, then L is F -adequate.*

Proof: Let $[L : F] = p_1^{e_1} \cdots p_r^{e_r}$ and $[K : F] = p_1^{f_1} \cdots p_r^{f_r}$, where $f_i \leq e_i$, $1 \leq i \leq r$. Fix p_i . Since K is F -adequate, there exist distinct prime spots q, q' of F such that $p_i^{f_i} \mid [K_q : F_q]$ and $p_i^{f_i} \mid [K_{q'} : F_{q'}]$. Let $H = \text{Gal}(L/(F_q \cap L))$. Since $L_q = F_q L$, $K_q = F_q K$, and both L/F , K/F are Galois extensions, we have $\text{Gal}(L_q/F_q) \cong \text{Gal}(L/(F_q \cap L))$ and $\text{Gal}(K_q/F_q) \cong \text{Gal}(K/(F_q \cap K))$. Since $\Phi(G)$ corresponds to K and H corresponds to $F_q \cap L$, it follows that the group $\Phi(G)H$ corresponds to $K \cap (F_q \cap L) = F_q \cap K$. We have $p_i^{f_i} \mid [K_q : F_q] = [K : F_q \cap K] = [\Phi(G)H : \Phi(G)]$, and $[G : \Phi(G)] = [K : F] = p_1^{f_1} \cdots p_r^{f_r}$. Therefore $p_i \nmid \frac{[G : \Phi(G)]}{[\Phi(G)H : \Phi(G)]} = [G : \Phi(G)H]$. Thus $p_i \nmid [G : H] = \frac{p_1^{e_1} \cdots p_r^{e_r}}{[H]} = \frac{p_1^{e_1} \cdots p_r^{e_r}}{[L : F_q \cap L]} = \frac{p_1^{e_1} \cdots p_r^{e_r}}{[L_q : F_q]}$, since G is Frattini closed. Therefore $p_i^{e_i} \mid |H| = [L : F_q \cap L] = [L_q : F_q]$. Since a similar calculation holds for q' , it follows from Theorem 1.1 that L is F -adequate. ■

The usefulness of this proposition depends on how $\text{Gal}(K/F) = G/\Phi(G)$ compares to G . For example, if $\Phi(G) = 1$, then G is trivially Frattini closed and $K=L$, so Theorem 2.2 provides no new information. This holds, for example, if G is simple, or $G = S_n$, $n \geq 2$, or $G = A_4$. On the other hand, if $\Phi(G)$ is large, then Theorem 2.2 reduces the question of F -adequacy of L to that of a much smaller field K . The next result shows that p -groups and nilpotent groups are always Frattini closed.

PROPOSITION 2.3: *Let G be a finite group. Then G is Frattini closed if either G is a p -group or G is a nilpotent group.*

Proof: Assume first that G is a p -group, and suppose $p \mid [G : H]$. Then $[G : H] > 1$, and so $[G : \Phi(G)H] > 1$ by our earlier remark. Then $p \mid [G : \Phi(G)H]$ since G is a p -group.

Now assume G is nilpotent. Then $G \cong P_1 \times \cdots \times P_r$ where P_1, \dots, P_r are the Sylow subgroups of G . Since the Sylow subgroups have pairwise relatively prime orders, it follows that for any subgroup H of G , $H \cong H_1 \times \cdots \times H_r$, $H_i \leq P_i$.

Also $\Phi(G) = \Phi(P_1) \times \cdots \times \Phi(P_r)$. Then $[G : \Phi(G)H] = \prod_{i=1}^r [P_i : \Phi(P_i)H_i]$ and $[G : H] = \prod_{i=1}^r [P_i : H_i]$. The result then follows from the result for p -groups.

■

Recall that if G is a p -group, then $G/\Phi(G)$ is an elementary abelian p -group of rank equal to the order of a minimal set of generators for G , and if G is a nilpotent group, then $G/\Phi(G)$ is a direct product of elementary abelian p -groups for various primes p . The results above show that questions of adequacy for Galois p -extensions of global fields reduce to questions of adequacy for elementary abelian p -extensions. In fact, the following two results show that this is true for Galois extensions having nilpotent Galois groups.

PROPOSITION 2.4: *Let E_1/F and E_2/F be Galois extensions of a global field F with $[E_1 : F]$ and $[E_2 : F]$ relatively prime. Then the compositum $E = E_1E_2$ is F -adequate if and only if E_1 and E_2 are both F -adequate.*

Proof: First observe that by [S; Corollary 2.3], if E is F -adequate, then E_1 and E_2 are both F -adequate. Conversely, suppose E_1 and E_2 are both F -adequate. Let p be a rational prime. Suppose $p^n \mid [E : F]$ and $p^{n+1} \nmid [E : F]$. Then $p^n \mid [E_i : F]$ for $i = 1$ or $i = 2$. The F -adequacy of E_i implies the existence of two primes q, q' of F such that $p^n \mid [(E_i)_q : F_q]$ and $p^n \mid [(E_i)_{q'} : F_{q'}]$, and hence $p^n \mid [E_q : F_q]$ and $p^n \mid [E_{q'} : F_{q'}]$. Thus E is F -adequate by Theorem 1.1. ■

COROLLARY 2.5: *Let L be a finite Galois extension of a global field F with nilpotent Galois group G . Then L is F -adequate if and only if E is F -adequate for every maximal elementary abelian p -extension E of F inside L .*

Proof: Since G is Frattini closed by Proposition 2.3, it follows from Theorem 2.2 that L is F -adequate if and only if K is F -adequate, where $\text{Gal}(K/F) = G/\Phi(G)$. Since $G/\Phi(G)$ is a direct product of the maximal elementary p -abelian quotients of G , we see that K is the compositum of the maximal elementary abelian p -extensions of F inside L . Then by Proposition 2.4, it follows that K is F -adequate if and only if each of these maximal elementary abelian p -extensions is F -adequate. ■

For a p -group (or nilpotent group) with a small number of generators relative to its order, Theorem 2.2 gives a significant reduction. This becomes particularly useful when combined with the following results of Schacher.

PROPOSITION 2.6:

- (1) ([S; Theorem 10.1]) Let $[k : \mathbb{Q}] = n$ and let G be a finite p -group. If there exists a k -adequate Galois extension of k with Galois group G , then the number of generators of G is at most $(n/2) + 2$.
- (2) ([S; Theorem 10.2]) Let k be an algebraic number field in which p has a unique extension, and let G be a finite group. If there exists a k -adequate Galois extension of k with Galois group G , then any p -Sylow subgroup of G is metacyclic.
- (3) ([S; Theorem 10.3]) Let k be a global field of characteristic $p \neq 0$ and let G be a finite group. If there exists a k -adequate Galois extension of k with Galois group G , then every q -Sylow subgroup is metacyclic, for $q \neq p$.

Statement (1) of Proposition 2.6 shows that if L is a \mathbb{Q} -adequate Galois p -extension of \mathbb{Q} , then $G/\Phi(G) \cong \mathbb{Z}/p\mathbb{Z}$ or $\mathbb{Z}/p\mathbb{Z} \times \mathbb{Z}/p\mathbb{Z}$. Thus by Theorem 2.2 and Proposition 2.3, a Galois p -extension L is \mathbb{Q} -adequate if and only if the maximal elementary abelian p -extension of \mathbb{Q} inside L has degree at most p^2 , and that extension is \mathbb{Q} -adequate. This result is used in [GLS] to give an explicit means for determining \mathbb{Q} -adequacy of all Galois 2-extensions of \mathbb{Q} .

3. Frattini-closed groups

This section considers which finite groups are Frattini closed. For example, we show in Corollary 3.8 that finite supersolvable groups are always Frattini closed.

PROPOSITION 3.1: *Let P be a Sylow p -subgroup of a finite group G . If G is p -Frattini closed, then $\Phi(G) \cap P \leq \Phi(P)$.*

Proof: Let M be a maximal subgroup of P . Then $[P : M] = p$, so $p \mid [G : M]$. Since G is p -Frattini closed, it follows that $p \mid [G : \Phi(G)M]$, and hence $P \not\leq \Phi(G)M$. This implies $(\Phi(G) \cap P)M \not\leq P$. Therefore $\Phi(G) \cap P \leq M$, since M is a maximal subgroup of P . This holds for all such M , and so $\Phi(G) \cap P \leq \Phi(P)$.

■

The following lemma is proved in [I; Lemma 8.22], pp. 108–109.

LEMMA 3.2: *Let N be a normal subgroup of a finite group G , H any subgroup of G , and p a prime number. Suppose that P is a Sylow p -subgroup of G such that $P \cap H$ is a Sylow p -subgroup of H . Then $P \cap NH = (P \cap N)(P \cap H)$ is a Sylow p -subgroup of NH .*

We observe that if $\Phi(G) \cap P \leq \Phi(P)$ for some Sylow p -subgroup P of G , then this condition holds for every Sylow p -subgroup of G , since $\Phi(G)$ is normal in G .

PROPOSITION 3.3: *Let G be a finite group. If $\Phi(G) \cap P \leq \Phi(P)$ for some (and hence every) Sylow p -subgroup P of G , then G is p -Frattini closed.*

Proof: Let H be a subgroup of G , and suppose $p \mid [G : H]$. Let J be a Sylow p -subgroup of H and let P be a Sylow p -subgroup of G that contains J . Then $P \cap H = J$. Let $K = \Phi(G) \cap P \leq \Phi(P)$. Then K is a Sylow p -subgroup of $\Phi(G)$ since $\Phi(G)$ is normal in G . We know $p \mid [P : J]$, since $p \mid [G : H]$ implies $p \mid [G : J] = [G : P][P : J]$, but $p \nmid [G : P]$. Then $p \mid [P : \Phi(P)J]$ since P is p -Frattini closed by Proposition 2.3. Therefore $p \mid [P : KJ]$, since $K \leq \Phi(P)$, and hence $p \mid [G : KJ]$. Lemma 3.2 then implies $p \mid [G : \Phi(G)H]$ since KJ is a Sylow p -subgroup of $\Phi(G)H$. Thus G is p -Frattini closed. ■

COROLLARY 3.4: *Let G be a finite group, and let P be a Sylow p -subgroup of G . Then G is p -Frattini closed if and only if $\Phi(G) \cap P \leq \Phi(P)$.*

Proof: This follows immediately from Propositions 3.1 and 3.3. ■

LEMMA 3.5: *Let G be a finite group and let P be a Sylow p -subgroup of G . Let N be a normal subgroup of G , and assume that either p does not divide $|N|$ or $N \leq \Phi(P)$. If G/N is p -Frattini closed, then G is p -Frattini closed.*

Proof: First suppose p does not divide $|N|$. Let H be a subgroup of G with $p \mid [G : H]$. Then $p \mid [G : NH]$, since $[G : H] = [G : NH][NH : H] = [G : NH][N : N \cap H]$ and $p \nmid [N : N \cap H]$. Since $p \mid [G : NH] = [G/N : NH/N]$ and G/N is p -Frattini closed, it follows that $p \mid [G/N : \Phi(G/N)NH/N]$. Since $\Phi(G/N) \geq \Phi(G)N/N$, it follows that

$$p \mid [G/N : (\Phi(G)N/N)(NH/N)] = [G/N : \Phi(G)HN/N] = [G : \Phi(G)HN].$$

Therefore $p \mid [G : \Phi(G)H]$, and G is p -Frattini closed.

Now suppose $N \leq \Phi(P) \leq P$. We know P/N is a Sylow p -subgroup of G/N since $[G/N : P/N] = [G : P]$. Since G/N is p -Frattini closed, we have, by Proposition 3.1,

$$(\Phi(G)N/N) \cap (P/N) \leq \Phi(G/N) \cap P/N \leq \Phi(P/N) = \Phi(P)/N.$$

Thus $\Phi(G)N \cap P \leq \Phi(P)$. Therefore $\Phi(G) \cap P \leq \Phi(P)$, and G is p -Frattini closed by Proposition 3.3. ■

If G is a finite group and p a prime number, let $O_{p'}(G)$ denote the largest normal subgroup of G whose order is prime to p .

Definition 3.6: Let G be a finite group and p a prime number. We say that G has **p -length 1** if $G/O_{p'}(G)$ has a normal Sylow p -subgroup.

We note that if G has p -length 1 and N is a normal subgroup of G , then G/N also has p -length 1.

THEOREM 3.7: Let G be a finite group of p -length 1. Then G is p -Frattini closed.

Proof: The proof is by induction on $|G|$. Let P be a Sylow p -subgroup of G . If $|O_{p'}(G)| > 1$, then $G/O_{p'}(G)$ has p -length 1 and by induction it follows that $G/O_{p'}(G)$ is p -Frattini closed. Then Lemma 3.5 implies that G is p -Frattini closed. We may now assume that $|O_{p'}(G)| = 1$. Then P is a normal subgroup of G and it follows that $\Phi(P)$ is also a normal subgroup of G . If $|\Phi(P)| > 1$, then $G/\Phi(P)$ has p -length 1 and by induction $G/\Phi(P)$ is p -Frattini closed. Lemma 3.5 again implies that G is p -Frattini closed. We may now assume that $|\Phi(P)| = 1$ so that P is a normal elementary abelian Sylow p -subgroup of G . By the Schur-Zassenhaus Theorem, there exists a p -complement K to P in G . We may regard P as an $F_p[K]$ -module. By Maschke's Theorem, $P = P_1 \oplus \cdots \oplus P_r$ with each P_i an irreducible $F_p[K]$ -module. Let $P^i = \sum_{j \neq i} P_j$. Then $P^i K$ is a maximal subgroup of G and so $\Phi(G) \leq \bigcap_i P^i K = K$. Hence $\Phi(G) \cap P = 1$, as desired.

■

COROLLARY 3.8: Let G be a finite supersolvable group. Then G has p -length 1 for every prime p and hence G is Frattini closed.

Proof: Let p be a prime divisor of $|G|$ and let P be a Sylow p -subgroup of G . By [H; 10.5.4], $[G, G]$ is nilpotent. So $[G, G] = (P \cap [G, G]) \times R$, where R is a normal subgroup of G of order prime to p . Hence $R \leq O_{p'}(G)$ and so, $[G, G] \leq O_{p'}(G)P$. Thus $O_{p'}(G)P$ is a normal subgroup of G . Therefore G has p -length 1 and so, by Theorem 3.7, G is p -Frattini closed. ■

4. Some counterexamples

In this section we describe a few examples of finite groups which are not Frattini closed. By Frattini's argument ([H; 10.4.2]), $\Phi(G)$ is a normal, nilpotent subgroup of the finite group G , hence contained in the Fitting subgroup $F(G)$, the maximal normal nilpotent subgroup of G . In all of our examples, $F(G)$ will be an elementary abelian normal p -subgroup of G for some prime p and we will have $C_G(F(G)) = F(G)$. Hence we may regard $F(G) = V$ as a $K[H]$ -module,

where $K = \mathbb{Z}/p\mathbb{Z}$ and $H = G/F(G)$. We denote by $J(V)$ the intersection of all maximal $K[H]$ -submodules of V .

LEMMA 4.1: *For G and V as above, $J(V) \leq \Phi(G) \leq V$.*

Proof: As noted above, $\Phi(G) \leq V$. Let M be a maximal subgroup of G . If $G \neq VM$, then $V \leq M$. On the other hand, if $G = VM$, then $V \cap M < V$ and so $V \cap M$ is contained in a maximal $K[H]$ -submodule W of V , whence $WM < G$ and so $W = V \cap M$. Thus either $\Phi(G) = V$ or $\Phi(G)$ is the intersection of certain maximal $K[H]$ -submodules of V . In particular $J(V) \leq \Phi(G)$, as claimed. ■

In most of our examples, $G = V \rtimes H$ for H a subgroup of G having a Sylow p -subgroup of order p .

LEMMA 4.2: *Suppose that $G = V \rtimes H$ where H is a subgroup of G having a Sylow p -subgroup A of order p . Let $P = VA$. Then $\Phi(P) = [V, A] = [P, P]$.*

Proof: Since V is an elementary abelian p -subgroup of G and $[V, A] \triangleleft VA = P$, it follows that $P/[V, A]$ is an abelian group generated by elements of order p , hence is elementary abelian. Thus $\Phi(P) \leq [V, A] \leq [P, P]$, whence equality holds. ■

Since our goal is to exhibit examples with $\Phi(G) \cap P \not\leq \Phi(P)$ for P a Sylow p -subgroup of G , it will suffice to exhibit groups $G = V \rtimes H$ having a Sylow p -subgroup $P = V \rtimes A$ with $|A| = p$ such that $J(V) \not\leq [V, A]$. If V is completely reducible, then $J(V) = 0$ and so $J(V) \leq [V, A]$. Hence we will look at the opposite extreme — indecomposable $K[G]$ -modules which are not irreducible. We shall look at projective indecomposable modules for groups H with $H = LA$ where A is a Sylow p -subgroup of H of order p and L is a Hall p' -subgroup of H , i.e., $A \cap L = 1$. Such Hall subgroups always exist in solvable groups by a theorem of Philip Hall. The following observation was called to our attention by Walter Feit.

LEMMA 4.3: *Let H be a finite group, p a prime and K a field of characteristic p . Suppose that H has a Hall p' -subgroup L . Then every projective indecomposable $K[H]$ -module is a direct summand of $\text{Ind}_L^H(W)$ for some irreducible $K[L]$ -module.*

Proof: Projective indecomposables are direct summands of the group algebra $K[H]$. Now $K[H] = \text{Ind}_1^H(K)$ where 1 denotes the trivial subgroup of H . Then by transitivity of induction

$$K[H] = \text{Ind}_L^H(\text{Ind}_1^L(K)) = \text{Ind}_L^H(K[L]).$$

As L is a p' -group, $K[L]$ is completely reducible by Maschke's Theorem. Hence $\text{Ind}_L^H(K[L])$ is a sum (with multiplicities) of $\text{Ind}_L^H(W)$ as W ranges over the irreducible $K[L]$ -modules. Now we are done by the Krull–Schmidt Theorem. ■

In our first example, $p = 3$, $K = \mathbb{Z}/3\mathbb{Z}$ and $H = \text{SL}(2, 3) = Q \rtimes A$, where Q is a normal quaternion subgroup of order 8 and A is a cyclic group of order 3. Let W be the absolutely irreducible 2-dimensional $K[Q]$ -module obtained by regarding Q as a subgroup of $\text{GL}(2, 3)$. By Green's Indecomposability Theorem [CR; 19.22], $V = \text{Ind}_Q^H(W)$ is a projective indecomposable $K[H]$ -module of dimension 6. Such projective indecomposable modules always have a unique irreducible quotient. As W is the restriction to Q of an irreducible 2-dimensional $K[H]$ -module V_0 , it follows by Frobenius–Nakayama Reciprocity [A; III.6] that $J(V)$ is 4-dimensional with $V/J(V) \cong V_0$. On the other hand, as a $K[A]$ -module, V is projective, hence free. So V_A is the direct sum of two copies of $K[A]$, whence $[V, A]$ is also 4-dimensional.

LEMMA 4.4: *Let $H = \text{SL}(2, 3)$, $K = \mathbb{Z}/3\mathbb{Z}$ and let V be the 6-dimensional indecomposable $K[H]$ -module described above. Let A be a Sylow 3-subgroup of H . Then $J(V) \not\leq [V, A]$. Hence if $G = V \rtimes H$, then $\Phi(G) \cap P \not\leq \Phi(P)$.*

Proof: Suppose on the contrary that $J(V) \leq [V, A]$. Then as both spaces are 4-dimensional, $J(V) = [V, A]$ and so A is in the kernel of the action of H on $V/J(V)$. However $V/J(V) \cong V_0$, a faithful $K[H]$ -module. This contradiction proves that $J(V) \not\leq [V, A]$ and the final statement follows by previous remarks. ■

Remark: With H and V as above, V has a unique minimal $K[H]$ -submodule V_0 of dimension 2. If we set $V_1 = V/V_0$, then H and V_1 afford an even smaller counterexample.

We shall only remark briefly on other similar examples. First of all, we may mimic the above example by replacing $\text{SL}(2, 3)$ by $H = Q \rtimes A$, where Q is a non-abelian q -group for some prime $q \neq p$ and A is a cyclic group of order p , where p divides $q^2 - 1$ and $C_H(Q) = Z(Q)$. We let K be a finite field of characteristic p containing primitive q^{th} roots of 1. Then there is an absolutely irreducible $K[Q]$ -module W of dimension q and again $V = \text{Ind}_Q^H(W)$ is an indecomposable $K[H]$ -module with $V/J(V) \cong W_0$, where W_0 is an irreducible lift of W to a q -dimensional $K[H]$ -module. Again V_A is a free $K[A]$ -module, whence

$\dim_K([V, A]) = \dim_K(J(V))$. Thus the hypothesis that $J(V) \leq [V, A]$ leads to the same contradiction as before.

Finally we mention two non-solvable counterexamples. First, taking $p = 5$ and $H = A_5$, the alternating group of degree 5, we see that H has a Hall 5'-subgroup J isomorphic to A_4 . Taking $K = \mathbb{Z}/5\mathbb{Z}$, we may take an irreducible $K[J]$ -module W of dimension 3 and then take $V = \text{Ind}_J^H(W)$. Although Green's Theorem does not apply, an easy inspection of $K[H]$ confirms that V is a projective indecomposable module for H , after which the same argument as before shows that $J(V) \not\leq [V, A]$ for A a Sylow 5-subgroup of H .

Lastly, a rather different type of counterexample is afforded by a group G with $F(G) = V$ elementary abelian of order 8 and with $G/V \cong \text{GL}(3, 2)$ but with no subgroup of G isomorphic to $\text{GL}(3, 2)$. Such a group may be exhibited as a subgroup of the Chevalley group $G_2(5)$, for example. Since there is no partial complement to V in G , it follows easily that $\Phi(G) = V$. On the other hand, G contains the normalizer of a Cartan subgroup T of $G_2(5)$ with

$$T \cong \mathbb{Z}/4\mathbb{Z} \times \mathbb{Z}/4\mathbb{Z}$$

and with $N_{G_2(5)}(T)/T \cong W(G_2) \cong D_6$, where D_6 is the dihedral group of all symmetries of the regular hexagon. A Sylow 2-subgroup P of G is contained in $N_{G_2(5)}(T)$, whence by inspection, $\Phi(P)$ is contained in T . Hence $\Phi(G) \cap P = \Phi(G) = V \not\leq \Phi(P)$ in this case as well.

References

- [A] J. L. Alperin, *Local Representation Theory*, Cambridge University Press, Cambridge, 1986.
- [CR] C. W. Curtis and I. Reiner, *Methods of Representation Theory*, Vol. 1, Wiley-Interscience, New York, 1981.
- [D] J. D. Dixon, *Problems in Group Theory*, Dover, New York, 1973.
- [GLS] H. G. Grundman, D. B. Leep and T. L. Smith, \mathbb{Q} -adequacy of Galois 2-extensions, Israel Journal of Mathematics, this volume.
- [H] M. Hall, Jr., *Theory of Groups*, 2nd edition, Chelsea, New York, 1976.
- [I] M. Isaacs, *Algebra, A Graduate Course*, Brooks/Cole, Pacific Grove, California, 1994.
- [S] M. Schacher, *Subfields of division rings, I*, Journal of Algebra **9** (1968), 451–477.