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ABSTRACT

Let L be a finite Galois extension of a global field F. It is shown that if
the Galois group G = Gal(L/F) satisfies a certain condition, then L is a
maximal commutative subfield of some F-division algebra if and only if
the intermediate field corresponding to the Frattini subgroup of G is also
a maximal commutative subfield of some F-division algebra. In particular
this condition holds if G is a supersolvable group.
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1. Introduction

This paper is concerned with the following question: If F is a field and L a finite
extension of F, does there exist an F-central division algebra D containing L
as a maximal commutative subfield? If there exists such a D, L is said to be
F-adequate; otherwise L is F-deficient. This question was first explored in depth
in [S].

In this paper we consider a certain group-theoretic condition and show that
if a finite Galois extension L of a global field F' has a Galois group G satisfying
this condition, then the F-adequacy of L is determined by the F-adequacy of
the subfield fixed by the Frattini subgroup of G. We show in Section 3 that a
class of groups that includes finite supersolvable groups satisfies this condition.
In Section 4 we exhibit some groups that do not satisfiy this condition. For
basic group-theoretic results and facts about Frattini subgroups in particular,
the reader is referred to [D] and [H].

We fix L to be a finite Galois extension of a global field F with G = Gal(L/F).
We write ®(G) for the Frattini subgroup of G, and let K be the subfield of L
that is fixed by ®(G). Since ®(G) is normal in G, it follows that K/F is a Galois
extension.

A result of Schacher ([S; Corollary 2.3]) implies that if L is F-adequate, then
K is also F-adequate. We show in Theorem 2.2 that if G satisfies the group-
theoretic condition mentioned above, then the converse of this statement holds.

Combining Propositions 2.1, 2.5 and 2.6 of [S], we have the following charac-
terization of F-adequate Galois extensions. This characterization will allow us
to connect the F-adequacy of L to the F-adequacy of K.

THEOREM 1.1: [S] Let L/F be a Galois extension of global fields with
[L:F]=p{---per, where py,...,p, are distinct prime numbers. The following
are equivalent.

(1) L is F-adequate.
(2) For each i, 1 < i < r, there exist two distinct prime spots q,q’" of F
(depending on i) such that p{* | [Lq : Fg)] and p* | [Lg : Fy).

2. A group-theoretic condition for adequacy
Definition 2.1: Let p be a prime number. We say a finite group G is p-Frattini

closed if for every subgroup H of G, if p | [G : H], then p | [G : ®(G)H]. We say
G is Frattini closed if G is p-Frattini closed for all primes p.
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We remark that it is always true that if (G : H| > 1, then [G : ®(G)H] > 1.
For if (G : H| > 1, then H is contained in a maximal subgroup M of G. Then
®(G) < M and so ®(G)H < M < G.

THEOREM 2.2: Let L be a finite Galois extension of a global field F with G =
Gal(L/F). Let ®(G) be the Frattini subgroup of G, and let K be the subfield of
L that is fixed by ®(G). If K is F-adequate and G is Frattini closed, then L is
F-adequate.

Proof: Let [L : F] = p% ---pgr and [K : F] = p!" -..pfr, where f, < e,
1 < i< Fix p;. Since K is F-adequate, there exist distinct prime spots q, ¢
of F such that p;* | [K, : Fg] and p]* | [Ky : Fy). Let H = Gal(L/(F, N L)).
Since Ly = FyL, Ky = F,K, and both L/F, K/F are Galois extensions, we have
Gal(Ly/Fy) = Gal(L/(Fy N L)) and Gal(K,/F,) = Gal(K/(F, N K)). Since
®(G) corresponds to K and H corresponds to F, N L, it follows that the group
®(G)H corresponds to K N (FaN L) = F,N K. We have pf' | [Kq : Fy| =
K : F,n K] = [®G)H : ®(G)], and [G : &(G)] = [K : F] = pi*--.plr.
Therefore p, { rsigimatey = (G : ®(G)H]. Thus p, 1[G : H] = 2P since @
is Frattini closed. Therefore pi* | [H| = [L: FyN L] = [L, : F,]. Since a similar
calculation holds for ¢', it follows from Theorem 1.1 that L is F-adequate. |

The usefulness of this proposition depends on how Gal(K/F) = G/®(G) com-
pares to G. For example, if ®(G) = 1, then G is trivially Frattini closed and
K=L, so Theorem 2.2 provides no new information. This holds, for example, if
G is simple, or G = S,,n > 2, or G = As. On the other hand, if ®(G) is large,
then Theorem 2.2 reduces the question of F-adequacy of L to that of a much
smaller field K. The next result shows that p-groups and nilpotent groups are
always Frattini closed.

PROPOSITION 2.3: Let G be a finite group. Then G is Frattini closed if either
G is a p-group or G is a nilpotent group.

Proof:  Assume first that G is a p-group, and suppose p | [G : H]. Then
(G : H] > 1, and so [G : ®(G)H] > 1 by our earlier remark. Then p | [G : ®(G)H]
since G is a p-group.

Now assume G is nilpotent. Then G = P X -+- x P, where Pj,..., P. are the
Sylow subgroups of G. Since the Sylow subgroups have pairwise relatively prime
orders, it follows that for any subgroup H of G, H 2 H; x --- x H,,H; < P,.
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Also ®(G) = ®(Py) x -+ X ®(P,). Then [G: ®(G)H] = [[,1[P: : ®(F;)H,] and
(G : H] = [I;_,[P. : H,]. The result then follows from the result for p-groups.
i

Recall that if G is a p-group, then G/®(G) is an elementary abelian p-group
of rank equal to the order of a minimal set of generators for G, and if G is a
nilpotent group, then G/®(G) is a direct product of elementary abelian p-groups
for various primes p. The results above show that questions of adequacy for
Galois p-extensions of global fields reduce to questions of adequacy for elementary
abelian p-extensions. In fact, the following two results show that this is true for
Galois extensions having nilpotent Galois groups.

ProprosITION 2.4: Let E1/F and Ey/F be Galois extensions of a global field F
with [Ey : F) and [E : F] relatively prime. Then the compositum E = E1E; is
F-adequate if and only if E; and Es are both F-adequate.

Proof: First observe that by [S; Corollary 2.3, if E is F-adequate, then E; and
E5 are both F-adequate. Conversely, suppose E; and E; are both F-adequate.
Let p be a rational prime. Suppose p* | [E : F| and p"*! { [E : F]. Then
p* | [E, : F] for i =1 or ¢ = 2. The F-adequacy of E; implies the existence of
two primes g, q’ of F such that p® | [(E,)q : Fy] and p™ | [(E,)q : Fy], and hence
p" | [Eq: Fy] and p" | [Eq : Fy]. Thus E is F-adequate by Theorem 1.1. 1

COROLLARY 2.5: Let L be a finite Galois extension of a global field F with
nilpotent Galois group G. Then L is F-adequate if and only if E is F-adequate
for every maximal elementary abelian p-extension E of F inside L.

Proof: Since G is Frattini closed by Proposition 2.3, it follows from Theorem 2.2
that L is F-adequate if and only if K is F-adequate, where Gal(K/F) = G/®(G).
Since G/®(G) is a direct product of the maximal elementary p-abelian quotients
of G, we see that K is the compositum of the maximal elementary abelian p-
extensions of F inside L. Then by Proposition 2.4, it follows that K is F-
adequate if and only if each of these maximal elementary abelian p-extensions is
F-adequate. |

For a p-group (or nilpotent group) with a small number of generators relative
to its order, Theorem 2.2 gives a significant reduction. This becomes particularly
useful when combined with the following results of Schacher.
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PROPOSITION 2.6:

(1) ([S; Theorem 10.1]) Let [k : Q] = n and let G be a finite p-group. If there
exists a k-adequate Galois extension of k with Galois group G, then the
number of generators of G is at most (n/2) + 2.

(2) ([S; Theorem 10.2]) Let k be an algebraic number field in which p has a
unique extension, and let G be a finite group. If there exists a k-adequate
Galois extension of k with Galois group G, then any p-Sylow subgroup of
G is metacyclic.

(3) ([S; Theorem 10.3]) Let k be a global field of characteristic p # 0 and let
G be a finite group. If there exists a k-adequate Galois extension of k with
Galois group G, then every q-Sylow subgroup is metacyclic, for q # p.

Statement (1) of Proposition 2.6 shows that if L is a Q-adequate Galois p-
extension of Q, then G/®(G) = Z/pZ or Z/pZ x Z/pZ. Thus by Theorem 2.2
and Proposition 2.3, a Galois p-extension L is Q-adequate if and only if the
maximal elementary abelian p-extension of Q inside L has degree at most p?,
and that extension is Q-adequate. This result is used in [GLS] to give an explicit
means for determining Q-adequacy of all Galois 2-extensions of Q.

3. Frattini-closed groups

This section considers which finite groups are Frattini closed. For example, we
show in Corollary 3.8 that finite supersolvable groups are always Frattini closed.

PROPOSITION 3.1: Let P be a Sylow p-subgroup of a finite group G. If G is
p-Frattini closed, then ®(G) N P < ®(P).

Proof: Let M be a maximal subgroup of P. Then [P: M| =p,sop|[G: M].
Since G is p-Frattini closed, it follows that p | {G : ®(G)M], and hence P £
®(G)M. This implies (&(G) N P)M < P. Therefore ®(G)N P < M, since M is
a maximal subgroup of P. This holds for all such M, and so ®(G) N P < &(P).
|

The following lemma is proved in [I; Lemma 8.22], pp. 108-109.

LEMMA 3.2: Let N be a normal subgroup of a finite group G, H any subgroup
of G, and p a prime number. Suppose that P is a Sylow p-subgroup of G such
that PN H is a Sylow p-subgroup of H. Then PNNH = (PN N)(PNH) is a
Sylow p-subgroup of NH.

We observe that if (G) N P < ®(P) for some Sylow p-subgroup P of G, then
this condition holds for every Sylow p-subgroup of G, since ®(G) is normal in G.
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PRrOPOSITION 3.3: Let G be a finite group. If ®(G) N P < ®(P) for some (and
hence every) Sylow p-subgroup P of G, then G is p-Frattini closed.

Proof: Let H be a subgroup of G, and suppose p | [G : H|. Let J be a Sylow
p-subgroup of H and let P be a Sylow p-subgroup of G that contains .J. Then
PNnH=1J Let K=®(G)NP < ®(P). Then K is a Sylow p-subgroup of
®(G) since (G) is normal in G. We know p | [P : J], since p | [G : H] implies
p|[G:J)=[G:P}[P:J,but pf[G: P]. Thenp| [P : ®(P)J] since P is
p-Frattini closed by Proposition 2.3. Therefore p | [P : KJ], since K < ®(P),
and hence p | |G : KJ]. Lemma 3.2 then implies p | [G : ®(G)H] since KJ is a
Sylow p-subgroup of ®(G)H. Thus G is p-Frattini closed. |

COROLLARY 3.4: Let G be a finite group, and let P be a Sylow p-subgroup of
G. Then G is p-Frattini closed if and only if (G) N P < ®(P).

Proof: This follows immediately from Propositions 3.1 and 3.3. |

LEMMA 3.5: Let G be a finite group and let P be a Sylow p-subgroup of G. Let
N be a normal subgroup of G, and assume that either p does not divide |[N| or
N < ®(P). If G/N is p-Frattini closed, then G is p-Frattini closed.

Proof: First suppose p does not divide |[N|. Let H be a subgroup of G with
p | [G: H]. Then p | [G: NH], since (G : H| = [G : NH|[NH : H] =
[G:NH|]N:NNnH]and p{[N:NNH]. Since p|[G: NH] = [G/N : NH/N]
and G/N is p-Frattini closed, it follows that p | {G/N : ®(G/N)NH/N]. Since
®(G/N) > ®(G)N/N, it follows that

p|[G/N : (®(G)N/N)(NH/N)] = [G/N : ®(G)HN/N] = [G : ®(G)HN].
Therefore p | [G : ®(G)H], and G is p-Frattini closed.

Now suppose N < ®(P) < P. We know P/N is a Sylow p-subgroup of G/N
since [G/N : P/N] = [G : P]. Since G/N is p-Frattini closed, we have, by
Proposition 3.1,

{(®(G)N/N)N(P/N) < ®(G/N)n P/N < ®(P/N) = &(P)/N.
Thus ®(G)N N P < ®(P). Therefore ®(G) NP < ®(P), and G is p-Frattini
closed by Proposition 3.3. |

If G is a finite group and p a prime number, let Op(G) denote the largest
normal subgroup of G whose order is prime to p.
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Definition 3.6: Let G be a finite group and p a prime number. We say that G
has p-length 1 if G/Op (G) has a normal Sylow p-subgroup.

We note that if G has p-length 1 and N is a normal subgroup of G, then G/N
also has p-length 1.

THEOREM 3.7: Let G be a finite group of p-length 1. Then G is p-Frattini closed.

Proof: The proof is by induction on |G|. Let P be a Sylow p-subgroup of G.
If |Op(G)| > 1, then G/Op(G) has p-length 1 and by induction it follows that
G/Op(QG) is p-Frattini closed. Then Lemma 3.5 implies that G is p-Frattini
closed. We may now assume that |0, (G)| = 1. Then P is a normal subgroup of
G and it follows that ®(P) is also a normal subgroup of G. If |®(P)| > 1, then
G/®(P) has p-length 1 and by induction G/®(P) is p-Frattini closed. Lemma 3.5
again implies that G is p-Frattini closed. We may now assume that |®(P)| =1
so that P is a normal elementary abelian Sylow p-subgroup of G. By the Schur—
Zassenhaus Theorem, there exists a p~complement K to P in G. We may regard
P as an F,[K]-module. By Maschke’s Theorem, P = P; @ --- @ P, with each
P, an irreducible F,(K]|-module. Let P* = ¥;4,P;. Then P'K is a maximal
subgroup of G and so ®(G) < N, P'K = K. Hence ®(G) N P = 1, as desired.
|

COROLLARY 3.8: Let G be a finite supersolvable group. Then G has p-length 1
for every prime p and hence G is Frattini closed.

Proof: Let p be a prime divisor of |G| and let P be a Sylow p-subgroup of G. By
[H; 10.5.4], [G, G] is nilpotent. So [G,G] = (PN[G,G]) x R, where R is a normal
subgroup of G of order prime to p. Hence R < O, (G) and so, [G,G] < Oy (G)P.
Thus Op (G)P is a normal subgroup of G. Therefore G has p-length 1 and so,
by Theorem 3.7, G is p-Frattini closed. |

4. Some counterexamples

In this section we describe a few examples of finite groups which are not Frat-
tini closed. By Frattini’s argument ([H; 10.4.2]), ®(G) is a normal, nilpotent
subgroup of the finite group G, hence contained in the Fitting subgroup F(G),
the maximal normal nilpotent subgroup of G. In all of our examples, F(G) will
be an elementary abelian normal p-subgroup of G for some prime p and we will
have Cg(F(G)) = F(G). Hence we may regard F(G) = V as a K[H]-module,
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where K = Z/pZ and H = G/F(G). We denote by J(V) the intersection of all
maximal K[H]-submodules of V.

LEMMA 4.1: For G and V as above, J(V) < ®(G) < V.

Proof:  As noted above, ®(G) < V. Let M be a maximal subgroup of G. If
G # VM, then V < M. On the other hand, if G = VM, then VN M <V and
so VNM is contained in a maximal K[H|-submodule W of V, whence WM < G
and so W = VN M. Thus either &(G) = V or ®(G) is the intersection of certain
maximal K[H]-submodules of V. In particular J(V) < ®(G), as claimed. |

In most of our examples, G = V x H for H a subgroup of G having a Sylow
p-subgroup of order p.

LEMMA 4.2: Suppose that G = V x H where H is a subgroup of G having a
Sylow p-subgroup A of order p. Let P =V A. Then ®(P) = [V, A] =[P, P].

Proof: Since V is an elementary abelian p-subgroup of G and [V, A]«VA = P, it
follows that P/[V, A] is an abelian group generated by elements of order p, hence
is elementary abelian. Thus ®(P) < [V, A] < [P, P], whence equality holds.
|

Since our goal is to exhibit examples with ®(G) N P £ ®(P) for P a Sylow
p-subgroup of G, it will suffice to exhibit groups G = V x H having a Sylow
p-subgroup P =V x A with [A| = p such that J(V) £ [V, A]. If V is completely
reducible, then J(V) = 0 and so J(V) < [V, A]. Hence we will look at the
opposite extreme — indecomposable K[G]-modules which are not irreducible.
We shall look at projective indecomposable modules for groups H with H = LA
where A is a Sylow p-subgroup of H of order p and L is a Hall p'-subgroup of H,
i.e., ANL = 1. Such Hall subgroups always exist in solvable groups by a theorem
of Philip Hall. The following observation was called to our attention by Walter
Feit.

LEMMA 4.3: Let H be a finite group, p a prime and K a field of characteristic p.
Suppose that H has a Hall p'-subgroup L. Then every projective indecomposable
K[H]-module is a direct summand of Ind}! (W) for some irreducible K[L}-module.

Proof: Projective indecomposables are direct summands of the group algebra
K[H]. Now K[H] = Ind{ (K) where 1 denotes the trivial subgroup of H. Then
by transitivity of induction

K[H] = Ind¥ (Ind?(K)) = Indf (K[L]).
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As L is a p'-group, K[L] is completely reducible by Maschke’s Theorem. Hence
Ind?(K[L)) is a sum (with multiplicities) of Ind¥ (W) as W ranges over the
irreducible K[L]-modules. Now we are done by the Krull-Schmidt Theorem.
|

In our first example, p = 3, K = Z/3Z and H = SL(2,3) = Q@ x A, where Q is a
normal quaternion subgroup of order 8 and A is a cyclic group of order 3. Let W
be the absolutely irreducible 2-dimensional K[@]-module obtained by regarding
Q as a subgroup of GL(2, 3). By Green’s Indecomposability Theorem [CR; 19.22],
V= Indg (W) is a projective indecomposable K[H}-module of dimension 6. Such
projective indecomposable modules always have a unique irreducible quotient.
As W is the restriction to Q of an irreducible 2-dimensional K[H]-module Vj, it
follows by Frobenius-Nakayama Reciprocity [A; II1.6] that J(V) is 4-dimensional
with V/J(V) & Vp. On the other hand, as a K[A]-module, V is projective, hence
free. So V4 is the direct sum of two copies of K[A], whence [V, A] is also 4-
dimensional.

LEMMA 4.4: Let H = SL(2,3), K = Z/3Z and let V be the 6-dimensional
indecomposable K[H]-module described above. Let A be a Sylow 3-subgroup of
H. Then J(V) & [V, A]. Hence if G =V x H, then ®(G) N P £ ®(P).

Proof:  Suppose on the contrary that J(V) < [V, A]. Then as both spaces are
4-dimensional, J(V) = [V, A] and so A is in the kernel of the action of H on
V/J(V). However V/J(V) = Vg, a faithful K{H]-module. This contradiction
proves that J(V) £ [V, A] and the final statement follows by previous remarks.
]

Remark: With H and V as above, V has a unique minimal K[H]-submodule
Vi of dimension 2. If we set V; = V/Vj, then H and V; afford an even smaller
counterexample.

We shall only remark briefly on other similar examples. First of all, we may
mimic the above example by replacing SL(2,3) by H = Q x A, where Q is
a non-abelian g-group for some prime ¢ # p and A is a cyclic group of order
p, where p divides ¢*> — 1 and Cy(Q) = Z(Q). We let K be a finite field of
characteristic p containing primitive ¢** roots of 1. Then there is an absolutely
irreducible K[Q]-module W of dimension ¢ and again V = Indg (W) is an inde-
composable K[H]-module with V/J(V) = Wy, where W, is an irreducible lift of
W to a g-dimensional K[H]-module. Again V4 is a free K[A]-module, whence
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dimg ([V, A]) = dimg (J(V)). Thus the hypothesis that J(V) < [V, 4] leads to
the same contradiction as before.

Finally we mention two non-solvable counterexamples. First, taking p = 5 and
H = As, the alternating group of degree 5, we see that H has a Hall 5'-subgroup J
isomorphic to A4. Taking K = Z/5Z, we may take an irreducible K[J]-module W
of dimension 3 and then take V = Ind¥ (W). Although Green’s Theorem does not
apply, an easy inspection of K[H| confirms that V is a projective indecomposable
module for H, after which the same argument as before shows that J(V) £ [V, A]
for A a Sylow 5-subgroup of H.

Lastly, a rather different type of counterexample is afforded by a group G with
F(G) = V elementary abelian of order 8 and with G/V & GL(3,2) but with
no subgroup of G isomorphic to GL(3,2). Such a group may be exhibited as a
subgroup of the Chevalley group G3(5), for example. Since there is no partial
complement to V in G, it follows easily that ®(G) = V. On the other hand, G
contains the normalizer of a Cartan subgroup T of G3(5) with

T = 7./4Z x Z./AZ.

and with Ng,5)(T)/T =& W(G,) = Ds, where Dg is the dihedral group of all
symmetries of the regular hexagon. A Sylow 2-subgroup P of G is contained in
Neg,(5)(T), whence by inspection, ®(P) is contained in T. Hence &(G) N P =
®(G) =V £ ®(P) in this case as well.
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